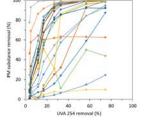
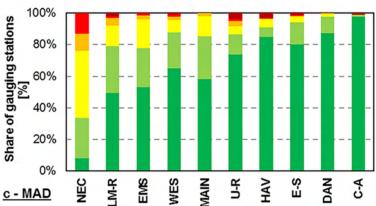

Eine vielfältige Herausforderung


T. Reemtsma, M. Muschket, D. Zahn, UFZ T. Knepper, D. Zahn, Hochschule Fresenius A.S. Ruhl, J. Kuckelkorn, UBA

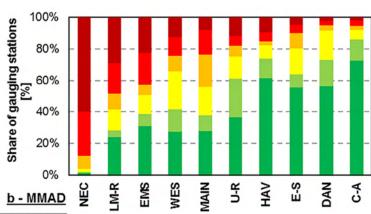
Teilweise geschlossener Wasserkreislauf

 For persistent (P) and very polar (mobile, M) organic compounds (PM substances) these barriers are not effective

water cycle may turn into a compound cycle


only dilution reduces concentration

Mittlere Verdünnung 90 – 99 %?


Verdünnung von Kläranlagen-Abläufen in Oberflächenwasser

- Anteil von Abwasser in deutschen Fließgewässern
 - Nach Anzahl Pegelstellen

mittlerer jährlicher Abfluss

mittlerer Trockenwetter-Abfluss

NEC: Neckar

LM-R: Low & Middle Rhein

EMS: Ems

WES: Weser

U-R: Upper Rhein

HAY: Havel

E-S: Eilbe-Saale

DAN: Danube

DAN: Danube

DAN: Danube

With the modalid area

Wastewater effluent contributions in river sections

- 0 - 5 %

- 0 - 5 %

- > 50 - 10 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

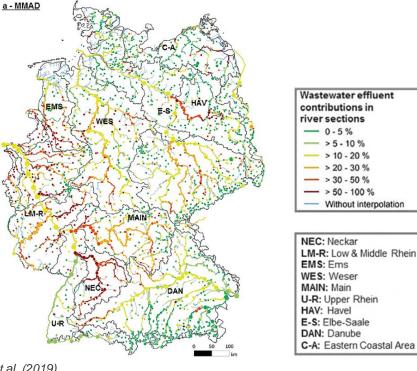
- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %


- > 30 - 50 %

- > 30 - 50 %

- > 30 - 50 %

Karakurt et al. (2019) Environ. Sci. Technol. 2019, 53, 6154

Verdünnung von Kläranlagen-Abläufen in Oberflächenwasser

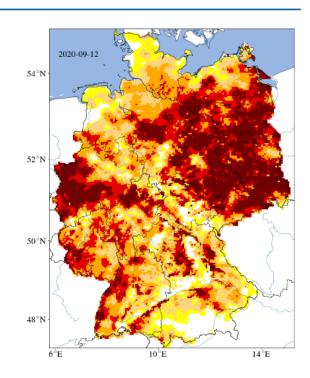
- Große regionale Unterschiede
- → Belastung von Rohwässern mit PM-Stoffen regional sehr unterschiedlich
- Daten von ca. Mitte der 2010er Jahre
- → Beachtung der Trends notwendig

Karakurt et al. (2019) Environ. Sci. Technol. 2019, 53, 6154

> 10 - 20 % > 20 - 30 % > 30 - 50 % Karakurt et al. (2019) Environ. Sci. Technol. 2019, 53 6154

en in Oberflächenwasser

- Große regionale Unterschiede
- → Belastung von Rohwässern mit PM-Stoffen regional sehr unterschiedlich
- Daten von ca. Mitte der 2010er Jahre
- → Beachtung der Trends notwendig


Gegenwart und Zukunft

- Abnehmende Abflüsse in Oberflächenwasser
- Fallende Grundwasserstände

LVZ, 05.02.20

- Abnehmende Verdünnung von KA-Ablauf in Oberflächenwasser
- 2. Notwendigkeit vermehrter Wasserwiederverwendung
- Ambitionen der EU
 - Circular Economy Action Plan of the European Union:
 "The Commission will facilitate water reuse and water efficiency"
- PM-Stoffe können dieses Ziel beeinträchtigen

Dürremonitor des UFZ https://www.ufz.de/index.php?de=37937

PM(T)-Stoffe – Jüngste Regulatorische Aktivitäten in der EU

"Delegierte Verordnung" der Europ. Komission zu CLP

- Tritt voraussichtlich im 2. Quartal 2023 in Kraft
- Neue Gefahrenklassen
 - "persistente, mobile und toxische Eigenschaften" (PMT)
 - "sehr persistente, sehr mobile Eigenschaften" (vPvM)

COMMISSION DELEGATED REGULATION (EU) .../...

of 19.12.2022

amending Regulation (EC) No 1272/2008 as regards hazard classes and criteria for the classification, labelling and packaging of substances and mixtures

Persistenz

- t_{1/2} in marine water > 60 d,
- t_{1/2} in fresh or estuarine water > 40 d,
- t_{1/2} in marine sediment > 180 d,
- t_{1/2} in fresh or estuarine water sediment > 120 d,
- t_{1/2} in soil > 120 d.

Mobilität

- $\log K_{\rm oc} < 3$
- For an ionisable substance, the mobility criterion shall be considered fulfilled when the lowest log K_{oc} value for pH between 4 and 9 is
 < 3.

(Text with EEA relevance)

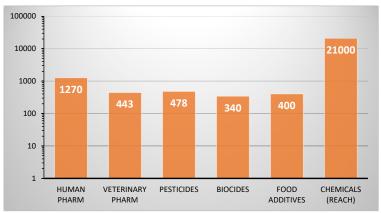
Zwischenfazit

- Angesichts der Klimatrends sind zunehmende Probleme mit PM-Stoffen zu erwarten
- Steigende Konzentrationen in Oberflächenwasser
- Steigende Häufigkeit von Befunden in Rohwässern

Vorhaben PROTECT

Persistente mobile organische Chemikalien in der aquatischen Umwelt:

 Quellen, Vorkommen und technische Möglichkeiten zu ihrer Entfernung in der Trinkwasseraufbereitung (PROTECT)


GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

... schwierig zu analysieren!

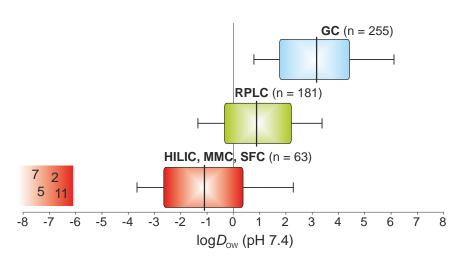
PM-Verbindungen – Wonach suchen?

ca 25.000 Chemikalien zu betrachten?

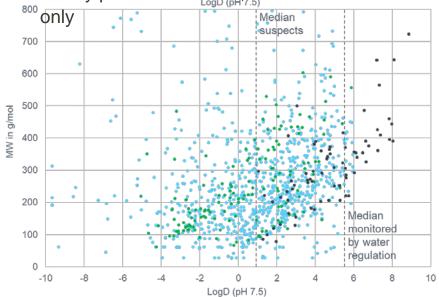
Number of chemicals in different regulatory areas

- Anteil von ca. 10% PM?
- Aber non-P Verbindungen können Vorläufer von PM sein

- Transformationsprozesse
 - Vergrößern die Zahl der PM-Kandidaten
 - Produkte sind zumeist polarer (mobiler)

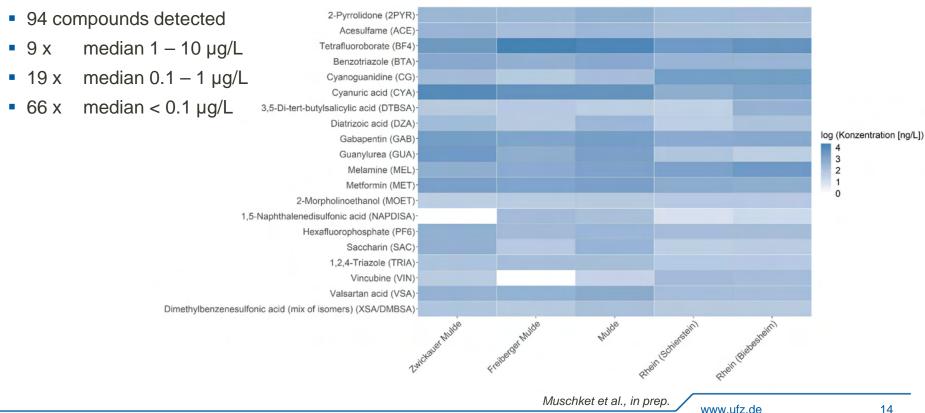

1: benzotriazole ozonation, 2: diclofenac phototransformation

Für die meisten Stoffe sind Transformationsprodukte unbekannt


Wie suchen?

- Specific analytical methods for the LC-HRMS screening of highly polar compounds
 - HILIC-, SFC-, MMC-

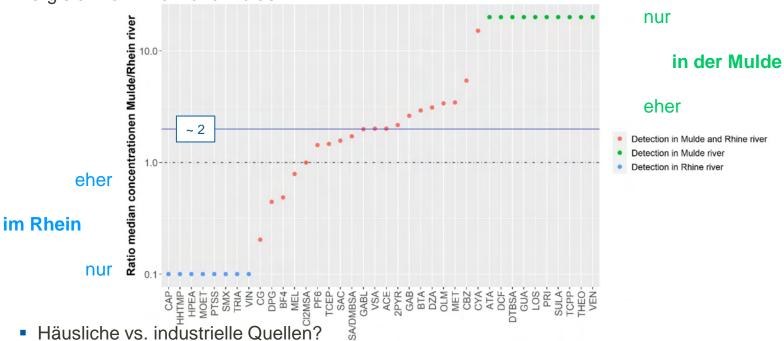
- Suspect Screening for > 1300 PM candidates by HILIC-HRMS and SFC-HRMS
 - mostly parent chemicals, small number of TPs


Neuwald et al. (2021) Water Res. 204, 17645

Analytik für PM-Stoffe

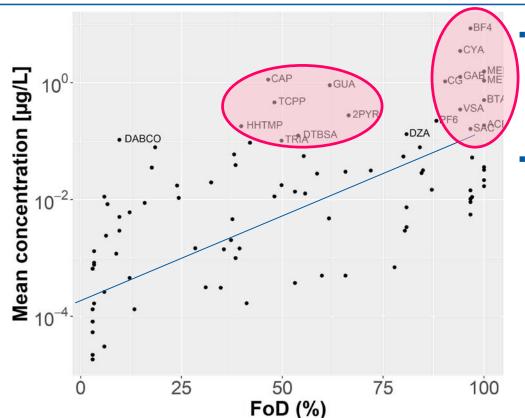
- Auswahl von 130 Zielanalyten aus Suspect-Screening
 - mit verfügbaren Referenzsubstanzen
- Komplementäre quantitative, validierter HILIC-MS und SFC-MS Methoden
- Untersuchung zu
 - Auftreten in Oberflächenwasser
 - Entfernung auf dem Weg zum Rohwasser für die Trinkwasserversorgung
 - TW-Aufbereitung
 - 4. Reinigungsstufen auf Kläranlagen zur Vermeidung von Emissionen
 - Gesundheitl. Bewertung von Befunden

... immer und überall da?


Monitoring for ~ 130 PM Chemicals in Surface Waters

Flussgebietsspezifische Belastungen

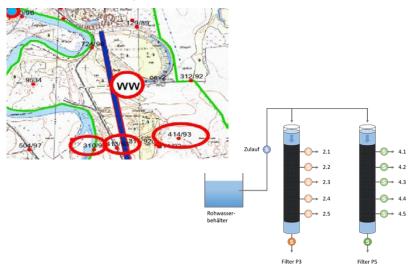
Vergleich von Rhein und Mulde



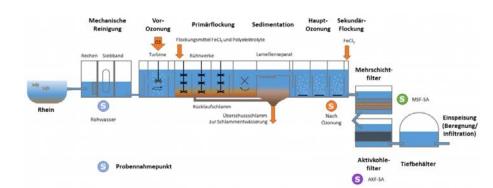
Belastung ist nicht überall gleichartig

Muschket et al., in prep.

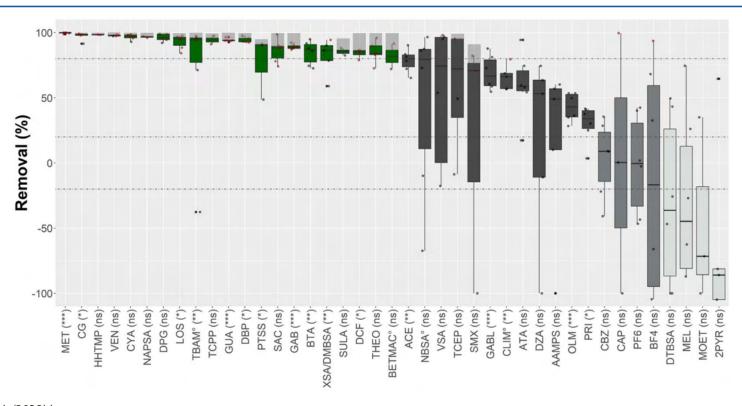
PM-Stoffe in Oberflächenwasser


- Einige Stoffe sehr häufig und in "hohen"
 Konzentrationen
 - BF4, CYA, GAB, ACE, CG, BTSA, ACE,
 MET
- Anderen seltener aber dennoch in hohen Konzentrationen
 - CAP, GUA, TCPP, 2-PYR, HHTMP, DTBSA, TRIA, DABCO

... nicht zu entfernen?

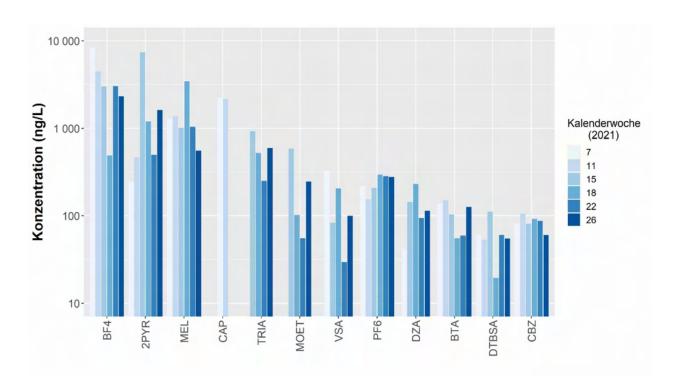

Nutzung von Oberflächenwasser zur Trinkwassergewinnung

- Naturnahe Aufbereitung durch Uferfiltration
 - Versuchsweise Nachbehandlung
 - Aktivkohle (Pilotanlage)
 - Ozonung (Labor



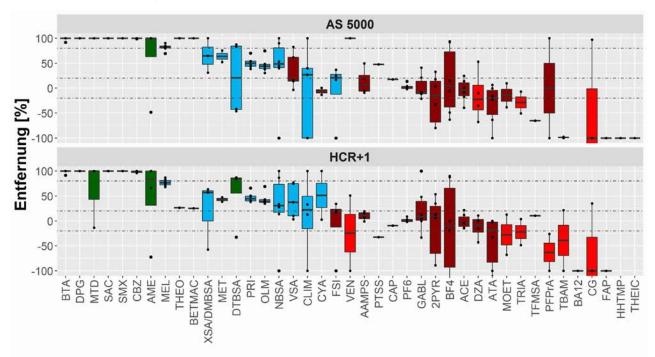
 Direkte Entnahme von Flusswasser mit vielstufiger Aufbereitung

Barriere Uferfiltration



Muschket et al. (2023) in prep.

Konzentrationen in Rohwasser nach Uferfiltration



Muschket et al. (2023) in prep.

AK-Pilotanlage für Uferfiltrat

■ Betriebszeit 12 – 18 Monate, Durchsatz ca. 34.000 – 47.000 BV

Rabe, Schumann, Ruhl (2021) UBA unpubl.

21

Entfernung von PM-Stoffe durch Weitergehende Aufbereitung

Substance	Activated carbon	Ozone	Reversed osmosis
MAPMA			
BETMAC			
DZA			
MPSA			
ННТМР			
TFMSA			
CG			
BTA			
MEL			
BDMA			
ATA			
DPG			
PRI			
DIOTOG			
VSA			
ACE			
PTSS			
SAC			
DMBSA+XSA			
AAMPS			
CBZ			
SMX			
DCF			

- Aktivkohle und Ozon entfernen manche PM-Stoffe
- Umkehrosmose entfernt sie alle effektiv

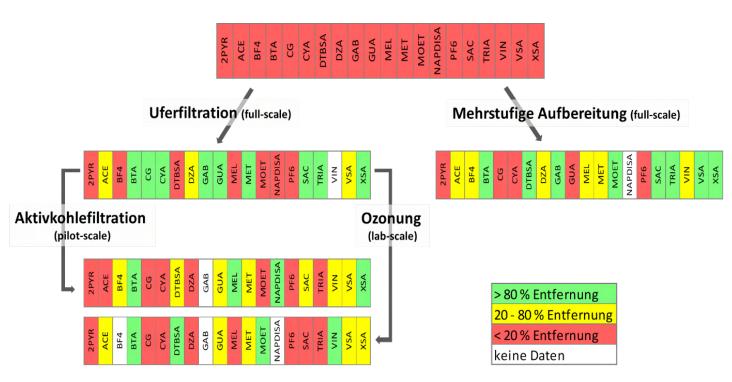
Activated Carbon Filtration

Ozonation

Reversed Osmosis

22

0 – 20 % none/very poor


20 – 80 % poor/medium

80 – 100 % good/very good

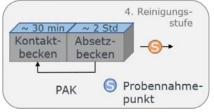
Rabe, Schumann, Ruhl (2021) UBA unpubl.

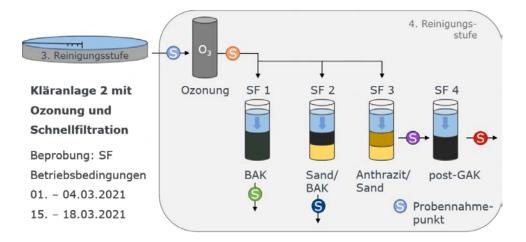
PM-Stoffe bei Nutzung von Oberflächenwasser

Reemtsma et al. (2023) Abschlussbericht PROTECT

... vermeidbar?

4. Reinigungsstufen auf Kläranlagen




25

Beprobung: Jahreszeiten; 25. - 31.01.2021

19. - 25.07.2021

Neuwald et al. (2023) subm.

... toxisch?

www.ufz.de

26

PM ≠ PMT

27

Nicht offizielle Bewertung von PM-Befunden durch UBA

	Chemikalien-		
Konz.	Überschreitung nach	(Hypothetische)	Regulation
(µg/L)	Uferfiltration oder vielstufiger	Höchstwerte für	
	Aufbereitung	Trinkwasser	
10	keine	2PYR*, MEL , CG*, CYA*	vPvM
3	BF4	BTA	
1	MEL, CG	DZA, MET	
0,3	2PYR, CYA, PF6	NAPDISA*, VSA	PMT
0,1	BTA, DZA, GUA, MET, NAPDISA***, VSA	BF4**, GUA**, PF6**	

Fett: regulatorischer Höchstwert für Trinkwasser abgeleitet

Kuckelkorn (2023) in: Abschlussbericht PROTECT

www.ufz.de

^{*)} keine offiziellen Werte, sondern aufgrund der verfügbaren Tox-Daten von UBA abgeleitete, hypothetische Höchstwerte.

^{**)} Vorsorge-GOW aufgrund fehlender toxikologischer Daten.

^{***)} Median-Konzentration in Uferfiltrat: 0.096 µg/L

... was nun?

www.ufz.de

28

Zusammenfassung

- Angesichts der Klimawandels sind steigende Konzentrationen organischer Spurenstoffe in Oberflächenwasser zu erwarten
- Zugleich steigt der Bedarf an Wasserwiederverwendung
 - Incl. indirekte/unbeabsichtige Wiederverwendung
- Zunehmende Probleme mit PM-Stoffen bei der Wasser-Wiederverwendung zu erwarten
- Bisher keine generischen Analysenmethoden für PM-Stoffe und kein Routine-Monitoring
- Transformationsprodukte erh\u00f6hen die Zahl von PM-Kandidaten und sind meist unbekannt

- Suche nach PM-Stoffen hat zahlreiche bisher unbekannte Befunde geliefert.
 - Untersuchungsumfang noch begrenzt
- Bestehende Barrieren von Oberflächenwasser zu Rohwasser sind "löchrig"
- Naturnahe Aufbereitung nur begrenzt wirksam
- Bisherige Befunde zeigen ausreichende Entfernung/Verdünnung von PM-Stoffen im Wasserkreislauf
- Nicht (mehr) gesichert, wenn Toxizität von PM-Stoffen "zunimmt" (PFAS)
- Lokale Kontaminationen mit PM-Einzelstoffen sehr schwer zu entdecken

Danksagung

Partner

- Isabell Neuwald, Daniel Zahn, Thomas Knepper
 - Hochschule Fresenius, Idstein
- Jochen Kuckelkorn, Aki Sebastian Ruhl
 - Umweltbundesamt, Bad Elster, Berlin
- Luisa Rabe, Pia Schumann
 - TU Berlin
- Weitere (assoziierte) Partner
- Finanzielle Förderung:

- Prof Thorsten Reemtsma
 - Helmholtz Zentrum für Umweltforschung UFZ
 - Department Analytik
 - E-Mail: analytik@ufz.de
 - http://www.ufz.de/analytik

Vielen Dank für Ihre Aufmerksamkeit!

GEFÖRDERT VOM